December 29, 2007

Transformer/Transformator FOR SELL


Transformer (Transformator)


Cubicle


Unindo

Specification of Transformer (Transformator)
(Ex.ALFA Denpasar Bali)










Trafo:


Merk : Unindo AREVA -JKT (Standar IEC)
Transformator : 3 Phasa 50 Hz
No : 64191

Dibuat Tahun : 1996

Daya Nominal ( KVA) : 630 630
Hubungan D YNS

1. 21.000


2. 20.500

Tegangan Nominal (Volt) 3. 20.000 400

4. 19.500


5. 19.000

Arus Nominal (Ampere) 18,2 909,3
Tegangan Hubungan Singkat 4%

Pendingin Dengan Minyak : ESSO 80

Kenaikan Suhu : Minyak 60

Kumparan 65
Tingkat Isolasi Dasar : 125 KV

Jumlah Berat : 370 Kg

Buatan : Indonesia





Cubicle ( Incoming ):


Merk : Unindo AREVA -JKT
No. Sesi : 7149

No. SPPB : 9682811

Produksi Tahun : 1996

Fluokit M24 Incoming With LBS

Jenis : 1S/ C10 Tegangan V : 24 KV
Standar IEC : 298 Arus In : 400 A
IP : 30 S Arus Rel : 400 A
Tingkat Isolasi Dasar
UH 125 KVP
Ketahanan Arus Hubung Singkat lth 1 Sec 12,5 A
Arus Pemutusan
ISC 400 A




Cubible ( Outgoing ):


Merk : Unindo AREVA -JKT
No. Sesi : 1311

No. SPPB : 9682811

Fluokit Transformer Protection

Jenis : PFA/ C12 Tengangan V : 24 KV
Standar IEC : 298 Arus In : Rating Fuse A
IP : 305 Arus Rel : 400 A
Tingkat Isolasi Dasar
UH 125 KVP
Ketahanan Arus Hubung Singkat lth 1 sec 12,5 KA
Arus Pemutusan
ISC Rating Fuse A




For further information regarding the TRANSFORMER (TRANSFORMATOR) including the CUBICLES, please contact us



Three-phase electric power (Transformer)

Three-phase electric power is a common method of electric power transmission. It is a type of polyphase system mainly used to power motors and many other devices. A three-phase system uses less conductor material to transmit electric power than equivalent single-phase, two-phase, or direct-current systems at the same voltage.

In a three-phase system, three circuit conductors carry three alternating currents (of the same frequency) which reach their instantaneous peak values at different times. Taking one conductor as the reference, the other two currents are delayed in time by one-third and two-thirds of one cycle of the electrical current. This delay between "phases" has the effect of giving constant power transfer over each cycle of the current, and also makes it possible to produce a rotating magnetic field in an electric motor.

Three phase systems may or may not have a neutral wire. A neutral wire allows the three phase system to use a higher voltage while still supporting lower voltage single phase appliances. In high voltage distribution situations it is common not to have a neutral wire as the loads can simply be connected between phases (phase-phase connection).

Three phase has properties that make it very desirable in electric power systems. First, the phase currents tend to cancel out one another, summing to zero in the case of a linear balanced load. This makes it possible to eliminate the neutral conductor on some lines; all the phase conductors carry the same current and so can be the same size, for a balanced load. Second, power transfer into a linear balanced load is constant, which helps to reduce generator and motor vibrations. Finally, three-phase systems can produce a magnetic field that rotates in a specified direction, which simplifies the design of electric motors. Three is the lowest phase order to exhibit all of these properties.

Most domestic loads are single phase. Generally three phase power either does not enter domestic houses at all, or where it does, it is split out at the main distribution board.

The three phases are typically indicated by colors which vary by country. See the table for more information.


Generation and distribution




At the power station, an electrical generator converts mechanical power into a set of alternating electric currents, one from each electromagnetic coil or winding of the generator. The currents are sinusoidal functions of time, all at the same frequency but offset in time to give different phases. In a three-phase system the phases are spaced equally, giving a phase separation of one-third cycle. The power frequency is typically 50 Hz in Europe, South America and Australia, and 60 Hz in the US and Canada (but see Mains power systems).

Generators output at a voltage that ranges from hundreds of volts to 30,000 volts. At the power station, transformers "step-up" this voltage to one more suitable for transmission.

After numerous further conversions in the transmission and distribution network the power is finally transformed to the standard mains voltage (i.e. the "household" voltage). The power may already have been split into single phase at this point or it may still be three phase. Where the stepdown is 3 phase, the output of this transformer is usually star connected with the standard mains voltage (120 V in North America and 230 V in Europe and Australia) being the phase-neutral voltage. Another system commonly seen in North America is to have a delta connected secondary with a centre tap on one of the windings supplying the ground and neutral. This allows for 240 V three phase as well as three different single phase voltages (120 V between two of the phases and the neutral, 208 V between the third phase (known as a high leg) and neutral and 240 V between any two phases) to be made available from the same supply.


Single-phase loads

Single-phase loads may be connected to a three-phase system, either by connecting across two live conductors (a phase-to-phase connection), or by connecting between a phase conductor and the system neutral, which is either connected to the center of the Y (star) secondary winding of the supply transformer, or is connected to the center of one winding of a delta transformer (Highleg Delta system) (see transformer and Split phase). Single-phase loads should be distributed evenly between the phases of the three-phase system for efficient use of the supply transformer and supply conductors.

The line-to-line voltage of a three-phase system is √3 times the line to neutral voltage. Where the line-to-neutral voltage is a standard utilization voltage, (for example in a 240 V/415 V system) individual single-phase utility customers or loads may each be connected to a different phase of the supply. Where the line-to-neutral voltage is not a common utilization voltage, for example in a 347/600 V system, single-phase loads must be supplied by individual step-down transformers. In multiple-unit residential buildings in North America, lighting and convenience outlets can be connected line-to-neutral to give the 120 V distribution voltage (115V utilization voltage), and high-power loads such as cooking equipment, space heating, water heaters, or air conditioning can be connected across two phases to give 208 V. This practice is common enough that 208 V single-phase equipment is readily available in North America. Attempts to use the more common 120/240 V equipment intended for three-wire single-phase distribution may result in poor performance since 240 V heating equipment will only produce 75% of its rating when operated at 208 V.

Where three phase at low voltage is otherwise in use, it may still be split out into single phase service cables through joints in the supply network or it may be delivered to a master distribution board (breaker panel) at the customer's premises. Connecting an electrical circuit from one phase to the neutral generally supplies the country's standard single phase voltage (120 VAC or 230 VAC) to the circuit.

The power transmission grid is organized so that each phase carries the same magnitude of current out of the major parts of the transmission system. The currents returning from the customers' premises to the last supply transformer all share the neutral wire, but the three-phase system ensures that the sum of the returning currents is approximately zero. The delta wiring of the primary side of that supply transformer means that no neutral is needed in the high voltage side of the network.

If the supply neutral of a three-phase system with line-to-neutral connected loads is broken, generally the voltage balance on the loads will no longer be maintained. Lightly-loaded phases may see up to sqrt(3) as much voltage as rated, causing overheating and failure of many types of loads. For example, if several houses are connected to a common transformer on a street, each house might be connected to one of the three phases. If the neutral connection is broken at the transformer, all equipment in a house might be damaged due to over voltage. Such events are hard to track down if one does not realize this possibility. With inductive and/or capacitive loads, all phases can suffer damage, especially with the possibility of resonances. Conservative distribution design will take this problem into account to ensure the neutral connections are as reliable as any of the phase connections.

Three-phase loads


The most important class of three-phase load is the electric motor. A three phase induction motor has a simple design, inherently high starting torque, and high efficiency. Such motors are applied in industry for pumps, fans, blowers, compressors, conveyor drives, and many other kinds of motor-driven equipment. A three-phase motor will be more compact and less costly than a single-phase motor of the same voltage class and rating; and single-phase AC motors above 10 HP (7.5 kW) are uncommon. Three phase motors will also vibrate less and hence last longer than single phase motor of the same power used under the same conditions.

Large air conditioning, etc. equipment use three-phase motors for reasons of efficiency, economy and longevity.

Resistance heating loads such as electric boilers or space heating may be connected to three-phase systems. Electric lighting may also be similarly connected. These types of loads do not require the revolving magnetic field characteristic of three-phase motors but take advantage of the higher voltage and power level usually associated with three-phase distribution. Fluorescent lighting systems also benefit from reduced flicker if adjacent fixtures are powered from different phases.

Large rectifier systems may have three-phase inputs; the resulting DC current is easier to filter (smooth) than the output of a single-phase rectifier. Such rectifiers may be used for battery charging, electrolysis processes such as aluminum production, or for operation of DC motors.

An interesting example of a three-phase load is the electric arc furnace used in steelmaking and in refining of ores.

In much of Europe stoves are designed for a three phase feed. Usually the individual heating units are connected between phase and neutral to allow for connection to a single phase supply. In many areas of Europe, single phase power is the only source available.


Phase converters

Occasionally the advantages of three-phase motors make it worthwhile to convert single-phase power to three phase. Small customers, such as residential or farm properties may not have access to a three-phase supply, or may not want to pay for the extra cost of a three-phase service, but may still wish to use three-phase equipment. Such converters may also allow the frequency to be varied allowing speed control. Some locomotives are moving to multi-phase motors driven by such systems even though the incoming supply to a locomotive is nearly always either DC or single phase AC.

Because single-phase power is interrupted at each moment that the voltage crosses zero but three-phase delivers power continuously, any such converter must have a way to store energy for the necessary fraction of a second.

One method for using three-phase equipment on a single-phase supply is with a rotary phase converter, essentially a single phase motor and a three-phase alternator (usually built on one physical shaft) with special starting arrangements and power factor correction that produces balanced three-phase power. When properly designed these rotary converters can allow satisfactory operation of three-phase equipment such as machine tools on a single phase supply. In such a device, the energy storage is performed by the mechanical inertia (flywheel effect) of the rotating components. An external flywheel is sometimes found on one or both ends of the shaft.

A second method that was popular in the 1940s and 50s was a method that was called the transformer method. In that time period capacitors were more expensive relative to transformers. So an autotransformer was used to apply more power through fewer capacitors. This method performs well and does have supporters, even today. The usage of the name transformer method separated it from another common method, the static converter, as both methods have no moving parts, which separates them from the rotary converters.

Another method often attempted is with a device referred to as a static phase converter. This method of running three phase equipment is commonly attempted with motor loads though it only supplies ⅔ power and can cause the motor loads to run hot and in some cases overheat. This method will not work when any circuitry is involved such as CNC devices, or in induction and rectifier type loads.

Some devices are made which create an imitation three-phase from three-wire single phase supplies. This is done by creating a third "subphase" between the two live conductors, resulting in a phase separation of 180° − 90° = 90°. Many three-phase devices will run on this configuration, but at lower efficiency.

Variable-frequency drives (also known as solid-state inverters) are used to provide precise speed and torque control of three phase motors. Some models can be powered by a single phase supply. VFDs work by converting the supply voltage to DC and then converting the DC to a suitable three phase source for the motor.


Alternatives to three-phase

  • Three-wire single-phase distribution is useful when high voltage three phase is not available, and allows double the normal utilization voltage to be supplied for high-power loads.
  • Two phase power, like three phase, gives constant power transfer to a linear load. For loads which connect each phase to neutral, assuming the load is the same power draw, the two wire system has a neutral current which is greater than neutral current in a three phase system. Also motors aren't entirely linear, which means that despite the theory, motors running on three phase tend to run smoother than those on two phase. The generators at Niagara Falls installed in 1895 were the largest generators in the world at the time and were two-phase machines. True two-phase power distribution is essentially obsolete. Special purpose systems may use a two-phase system for control. Two-phase power may be obtained from a three-phase system using an arrangement of transformers called a Scott-T transformer.
  • Monocyclic power was a name for an asymmetrical modified two-phase power system used by General Electric around 1897 (championed by Charles Proteus Steinmetz and Elihu Thomson; this usage was reportedly undertaken to avoid patent legalities). In this system, a generator was wound with a full-voltage single phase winding intended for lighting loads, and with a small (usually ¼ of the line voltage) winding which produced a voltage in quadrature with the main windings. The intention was to use this "power wire" additional winding to provide starting torque for induction motors, with the main winding providing power for lighting loads. After the expiration of the Westinghouse patents on symmetrical two-phase and three-phase power distribution systems, the monocyclic system fell out of use.

  • High phase order systems for power transmission have been built and tested. Such transmission lines use 6 or 12 phases and design practices characteristic of extra-high voltage transmission lines. High-phase order transmission lines may allow transfer of more power through a given transmission line right-of-way without the expense of a HVDC converter at each end of the line.