By appropriate selection of the numbers of turns, a transformer thus allows an alternating voltage to be stepped up — by making NS more than NP — or stepped down, by making it less.
A key application of transformers is to reduce the current before transmitting electrical energy over long distances through wires. Most wires have resistance and so dissipate electrical energy at a rate proportional to the square of the current through the wire. By transforming electrical power to a high-voltage, and therefore low-current form for transmission and back again afterwards, transformers enable the economic transmission of power over long distances. Consequently, transformers have shaped the electricity supply industry, permitting generation to be located remotely from points of demand. All but a fraction of the world's electrical power has passed through a series of transformers by the time it reaches the consumer.
Transformers are some of the most efficient electrical 'machines', with some large units able to transfer 99.75% of their input power to their output.Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a stage microphone to huge units weighing hundreds of tonnes used to interconnect portions of national power grids. All operate with the same basic principles, though a variety of designs exist to perform specialized roles throughout home and industry.
Energy losses
Transformer losses are attributable to several causes and may be differentiated between those originating in the windings, sometimes termed copper loss, and those arising from the magnetic circuit, sometimes termed iron loss. The losses vary with load current, and may furthermore be expressed as "no-load" or "full-load" loss, respectively. Winding resistance dominates load losses, whereas hysteresis and eddy currents losses contribute to over 99% of the no-load loss. The no-load loss can be significant, meaning that even an idle transformer constitutes a drain on an electrical supply, and lending impetus to development of low-loss transformers
An ideal transformer would have no energy losses, and would therefore be 100% efficient. Despite the transformer being amongst the most efficient of electrical machines, with experimental models using superconducting windings achieving efficiencies of 99.85%, energy is dissipated in the windings, core, and surrounding structures. Larger transformers are generally more efficient, and those rated for electricity distribution usually perform better than 95%. A small transformer, such as a plug-in "power brick" used for low-power consumer electronics, may be no more than 85% efficient; although individual power loss is small, the aggregate losses from the very large number of such devices is coming under increased scrutiny.
- Winding resistance
- Current flowing through the windings causes resistive heating of the conductors. At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.
- Hysteresis losses
- Each time the magnetic field is reversed, a small amount of energy is lost due to hysteresis within the core. For a given core material, the loss is proportional to the frequency, and is a function of the peak flux density to which it is subjected.
- Eddy currents
- Ferromagnetic materials are also good conductors, and a solid core made from such a material also constitutes a single short-circuited turn throughout its entire length. Eddy currents therefore circulate within the core in a plane normal to the flux, and are responsible for resistive heating of the core material. The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness.
- Magnetostriction
- Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction. This produces the buzzing sound commonly associated with transformers, and in turn causes losses due to frictional heating in susceptible cores.
- Mechanical losses
- In addition to magnetostriction, the alternating magnetic field causes fluctuating electromagnetic forces between the primary and secondary windings. These incite vibrations within nearby metalwork, adding to the buzzing noise, and consuming a small amount of power.
- Stray losses
- Leakage inductance is by itself lossless, since energy supplied to its magnetic fields is returned to the supply with the next half-cycle. However, any leakage flux that intercepts nearby conductive materials such as the transformer's support structure will give rise to eddy currents and be converted to heat.
Types
A variety of specialised transformer designs has been created to fulfil certain engineering applications, though they share several commonalities. Several of the more important transformer types include:Autotransformer
An autotransformer has only a single winding with two end terminals, plus a third at an intermediate tap point. The primary voltage is applied across two of the terminals, and the secondary voltage taken from one of these and the third terminal. The primary and secondary circuits therefore have a number of windings turns in common. Since the volts-per-turn is the same in both windings, each develops a voltage in proportion to its number of turns. By exposing part of the winding coils and making the secondary connection through a sliding brush, an autotransformer with a near-continuously variable turns ratio is obtained, allowing for very fine control of voltage.
Polyphase transformers
For three-phase supplies, a bank of three individual single-phase transformers can be used, or all three phases can be incorporated as a single three-phase transformer. In this case, the magnetic circuits are connected together, the core thus containing a three-phase flow of flux. A number of winding configurations are possible, giving rise to different attributes and phase shifts. One particular polyphase configuration is the zigzag transformer, used for grounding and in the suppression of harmonic currents.
Resonant transformers
A resonant transformer uses the inductance of its windings in combination with external capacitors connected in series or parallel with the windings, and/or the capacitance of the windings themselves, to create one or more resonant circuits. For example, it may use the inductance of the primary winding in series with a capacitor. Resonance can aid in achieving a very high voltage across the secondary. Resonant transformers such as the Tesla coil can generate very high voltages, and are able to provide much higher current than electrostatic high-voltage generation machines such as the Van de Graaff generator. Another application of the resonant transformer is to couple between stages of a superheterodyne receiver, where the selectivity of the receiver is provided by tuned transformers in the intermediate-frequency amplifiers.
Leakage transformers
A leakage transformer, also called a stray-field transformer, has a significantly higher leakage inductance than other transformers, sometimes increased by a magnetic bypass or shunt in its core between primary and secondary, which is sometimes adjustable with a set screw. This provides a transformer with an inherent current limitation due to the loose coupling between its primary and the secondary windings. The output and input currents are low enough to prevent thermal overload under all load conditions – even if the secondary is shorted.
Leakage transformers are used for arc welding and high voltage discharge lamps (cold cathode fluorescent lamps, which are series-connected up to 7.5 kV AC). It acts then both as a voltage transformer and as a magnetic ballast.Other applications are short-circuit-proof extra-low voltage transformers for toys or doorbell installations.
Instrument transformers
A current transformer is a measurement device designed to provide a current in its secondary coil proportional to the current flowing in its primary. Current transformers are commonly used in metering and protective relaying, where they facilitate the safe measurement of large currents. The current transformer isolates measurement and control circuitry from the high voltages typically present on the circuit being measured.
Voltage transformers (VTs) are used for metering and protection in high-voltage circuits. They are designed to present negligible load to the supply being measured and to have a precise voltage ratio to accurately step down high voltages so that metering and protective relay equipment can be operated at a lower potential.
3 comments:
[url=http://altmededu.com/]alternative medicine degrees online[/url]
[url=http://www.altmedschool.com/]alternative medicine online degree[/url]
[url=http://altmedschool.com/]institute of alternative medicine India[/url]
[url=http://altmedschool.com/]alternative medicine masters degree[/url]
[url=http://altmedschool.com/]college of alternative medicine[/url]
[url=http://altmededu.com/]alternative medicine courses in india[/url]
[url=http://altmededu.com/]institute for alternative medicine[/url]
[url=http://www.altmedschool.com/]alternative medicine course in india[/url]
Es war und mit mir. cialis ohne rezept levitra preiswert [url=http//t7-isis.org]viagra online[/url]
Post a Comment